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A modular capability to compute dynamic aeroelastic characteristics of rotor blades using the Euler/Navier–

Stokes flow equations and finite element structural equations is presented. The approach is based on a time-accurate

analysis procedure that is suitable for nonlinear fluid–structure interaction problems. Fluids and structural solvers

are time-accurately coupled in the C++ environment. Unsteady aerodynamic and aeroelastic results are validated

with experimental data for nonrotating and rotating isolated blades.

Introduction

C OMPUTATIONAL aeroelasticity is one of the most chal-
lenging fields for both rotorcraft and aircraft. Flutter “that

makes or breaks a vehicle” is an aeroelastic instability caused by
strong coupling of fluid and structural forces. In particular, the
behavior of rotary wings is inherently flexible and dynamic,
requiring time-accurate methods to compute aeroelastic character-
istics.

Aerodynamic methods based on linear theory are well established
for today’s rotorcraft applications, resulting inadvancedcodessuchas
the rotorcraft comprehensive analysis system [1] and comprehensive
analytical model of rotorcraft aerodynamics and dynamics [2]. These
codes, traditionally known as comprehensive codes (CC), include
structural modeling techniques based on nonlinear beam theory. In
comprehensive codes, the linear aerodynamic parameters are either
expressed as a function of structural parameters or specified using
empirical theories. While comprehensive codes have performed well
in the linear flow regime, their use is stretched beyond their realm of
applicability tononlinearflowregimes[3].Toovercomethe inabilities
of linear theories to compute complex flows involvingmoving shock
waves and flow separation, methods based on the Euler/Navier–
Stokes equations are essential [4]. At the same time, computational
fluid dynamics (CFD) needs to be time-accurately coupled with
advanced computational structural dynamics (CSD) capabilities to
capture the physics related to dynamic aeroelastic effects.

Since development of the first unsteady 2-D transonic code,
LTRAN2 [5], in the mid-1970s, use of CFD for aeroelasticity has
made continuous impacts on both aircraft and rotorcraft. The first
validated results obtained by the time-accurate coupling of finite-
difference-based fluids equations with finite-element-based struc-
tures equations for blade sections using LTRAN2 are reported in [6].
LTRAN2 is the first CFD code applied to unsteady blade–vortex
interaction simulations [7] of rotor blades. Reviews of rotary wing
aeroelasticity are reported in survey papers [8,9]. The first fully
validated procedure to compute CFD/CSD-based transonic
aeroelasticity of fixed blades is presented in [10].

Finite-element-method-based CSD and finite-difference-method-
based CFD have grown continuously since the mid-1950s and early

1970s, respectively. The levels of fidelity (see Fig. 1) in both areas
increased alongwith increased availability of computer power. Time-
accurately-coupled CFD/CSD methods for aircraft are adequately
mature for solving full configurations [11]. Many complex
configurations have been solved using NASA’s advanced aeroelastic
software, HiMAP [12].

In contrast to the situation for fixed-wing aircraft, the CFD/CSD-
based time-accurate aeroelastic methods for rotorcraft are
significantly lagging, as shown in Fig. 1. The arrows in Fig. 1 are
applicable to both fluids and structures. The arrow related to
complexity indicates the easewith which complex geometries can be
modeled using lower-fidelity models. As reported in [13], the current
validated state of the art is the quasi-steady or loosely coupled
approach based on hybrid CFD and CC methods [14]. Computa-
tional structural dynamics used in the CC method are limited to
simple beam models, mostly in harmonic motions. Recently, hybrid
methods were extended to tightly coupled computations [15], but
these have not yet been validated. Since CFD computations are
coupled in an ad hoc fashion with CC computations [15], it may not
be adequate to maintain time accuracy in nonlinear flow regimes in
which the hybrid CFD-CC method is neither valid nor suitable for
transient conditions [13]. Furthermore, the inability to predict
phase angles for flapping motion may be a strong indication of
inadequacies in the approach [16].

Within the Fundamental Aeronautics Program, NASA has
initiated an effort to develop CFD/CSD-coupled methods from first
principles, differing from current approaches in which CFD is run in
a slave mode by hybriding with comprehensive codes [15].
Development will be validated using classical test cases including
all possible physics-based modeling in a CFD/CSD-coupled
approach. From the configuration point of view, it will be more of a
bottoms-up approach rather than the current top-down approach
[17], which tries to address missing physics such as flexibility after
the fact. In addition, good balance in the fidelity (becoming
important for industry [3]) will be maintained rather than the current
extreme fidelity imbalances between CFD and CSM used for
rotorcraft [15]. For example, under current practices, CFD solutions
using millions of grid points are coupled with simple 2-D beam
models [15].

In this effort, beam finite element structural equations that are
adequate to predict the onset of flutter are used. The primary
advantage of beam elements is that they allow a reduction in the
number of structural equations while maintaining accuracy in
predicting responses. In addition, due to the absence of public-
domain aeroelastic test data, they facilitate validation with
compatible comprehensive codes. Most tools developed for the
2-D beam elements in the modular C++ environment will also be
applicable for use with 3-D finite element method (FEM)-based
CSD models to be used later in the program.
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Approach

Domain-Based Approach

When simulating aeroelasticity with coupled procedures, it is
common to deal with fluid equations in the Eulerian reference system
and structural equations in the Lagrangian system. The structural
system is physicallymuch stiffer than thefluid system, and numerical
matrices associated with structures are orders-of-magnitude stiffer
than those associated with fluids. Therefore, it is numerically
inefficient (or even impossible) to solve both systems using a single
numerical scheme (see the Sub-Structures section in [18]).

Guruswamy andYang [6] presented a numerical approach to solve
this problem for 2-D airfoils by independently modeling fluids using
the finite-difference-based transonic small-perturbation equations
and structures using finite element equations. The solutions were
coupledonly at theboundary interfaces betweenfluids and structures.
The coupling of solutions at boundaries can be done either explicitly
or implicitly. This domain-based approach allows one to take full
advantage of state-of-the-art numerical procedures for individual
disciplines. This coupling procedure has been extended to 3-D
problemsand incorporated in several advancedaeroelastic codes such
as XTRAN3S [19], based on the transonic small-perturbation theory.
It was also demonstrated that the same method could be extended to
modelfluidswith theEuler/Navier–Stokesequationsonmovinggrids
[10–12,20]. The coupled fluid–structure analysis procedure using a
domain-based approach is described in the next section.

To facilitate the domain-based approach, it is assumed that CFD
and CSD solvers are independent executables. Interfaces from fluids
to structures (FTOS) and structures to fluids (STOF) are also
considered separate executables. Activation of executables and
communication among them are managed by a C++ executive,
RUNEXE [21], and data transfers are made through I/O. Figure 2
shows a flow diagram of the process. This approach provides high
modularity to the analysis process in addition to the flexibility of
using different CFD and CSD codes. More details about C++ based

RUNEXE can be found in [21]. Another advantage of using C++ is
that it is portable to other frameworks.

During coupled calculations it is important to monitor
convergence data when computations are in progress. Therefore, a
2-D plotting capability based on XMGRACE [22], an open-source
software module, is included in the process. In addition, it is
necessary to save data for high-end graphics visualization. In this
process, a capability has been added to save data using the FieldView
format [23] at user-specified intervals. As demonstrated in [21], this
approach is efficient for coupling nonlinear flows with nonlinear
structures required for the rotorcraft system.

RUNEXE differs from HiMAP in several aspects. One difference
is that RUNEXE is independent of a data communication protocol,
whereas HiMAP is hard-wired for using the message passing
interface. Both internal I/O and TCL/Tk-based [21] data commu-
nications have been tested in RUNEXE. In addition, unlike HiMAP,
RUNEXE can have dynamic graphics interfaces.

CFD Module

In this paper, the Reynolds-averaged Navier–Stokes solver
OVERFLOW (based on the diagonal form of the Beam–Warming
central-difference algorithm and the algebraic Baldwin–Lomax
turbulence model) with modifications to model rotor blades is used
for flow solutions [24]. The latest version of the code OVERFLOW2
is extensively validated for steady flows. In this work, validation is
carried out for unsteady flows on flexible blades. An interface has
been added that exports blade surface pressures to the FTOSmodule
and reads-in a new deformed grid from the STOF module at every
time step.

The strong conservative law form of the Navier–Stokes equations
is used for accurate modeling of nonlinear flows. The equation for
pressures needed for aeroelastic equations [25] can be written as

p� �� � 1��e � 0:5��u2 � v2 �w2�� (1)

where � is the ratio of specific heats; e is enthalpy; � is freestream air
density; and u, v, and w are velocities nondimensionalized with the
freestream speed of air in the x, y, and z directions, respectively. The
time variable used in the Navier–Stokes equations to obtain is
nondimensionalized by the ratio of freestream airspeed and chord
length of the blade.

CSD Module

The 10-degree-of-freedom beam finite element BEMBLD used in
this work (shown in Fig. 3) is a modified version of Bernoulli–Euler
beam-theory-based FEM software [26]. The nodal degrees of
freedom (DOF) u and w represent flapping and chordwise DOF,
whereas �, �, and  represent torsional, chordwise, and flapwise
rotation DOF, respectively. It is improved by adding the first-order
effects of centrifugal rotation [27] and torsion–bending coupling
[28]. This element is well validated for nonrotating cases [26].
Figure 4 shows the validation for a rotating blade [29], for which the
average structural properties are given in Table 1. The frequency of
the first flapping mode compare well with the shake test for rotor
speeds up to �� 650 rotations per minute (rpm).

Element properties of BEMBLD are assembled into global
properties [26] and incorporated in CSD based on Lagrange’s
equations of motion:

�m�f �ug � �g�f _ug � �k�fug � fFg (2)

Fig. 1 Levels of fidelity used in fluid–structure interaction computa-

tions.

Fig. 2 Flow diagram of analysis process. Fig. 3 Ten degree of freedom beam finite element BEMBLD.
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where �m�, �g�, and �k� are mass, damping, and stiffness matrices,
respectively. fFg is the aerodynamic force vector defined as
1=2�U2fLg, where fLg is the aerodynamic global nodal force vector,
� is the freestream density, and U is the local speed of the blade
section.

The aeroelastic equations of motion (2) are solved by a numerical
integration method based on the linear-acceleration method [30].
Assuming a linear variation of the acceleration, then velocities and
displacements at the end of a time interval t��t can be derived as
follows:
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These time integration equations can also be derived by using the
second-order time-accurate central-difference scheme, which falls
into the explicit form of Newmark’s time integration methods [30].
To obtain physically meaningful responses, it is necessary to use the
same time step for integration for both the fluids and aeroelastic
equations of motion. Though Eqs. (3) are explicit in time, the time-
step size required to solve Reynolds-averaged Navier–Stokes
equations is an order of magnitude less than that required to solve the
aeroelastic equations of motion (3). In addition, the above time

integration scheme is nondissipative and does not lead to any
nonphysical aeroelastic damping.

The step-by-step integration procedure for obtaining the
aeroelastic response is performed as follows. The grid for the flow
solver is obtained using a dynamic grid generation module from the
ENSAERO code [10], using assumed initial values for displacement
fqg, velocity f _qg, and acceleration vectors f �qg. Using this grid, the
aerodynamic force vector fFg at time t��t is computed from
OVERFLOW2. Based on this aerodynamic vector, the new
displacements at time t��t are computed by solving Eq. (3). This
process is repeated every step to advance the aerodynamic and
structural equations of motion forward in time until the required
response is obtained.

Results

Computations are made for isolated nonrotating and rotating
blades. A C-H grid topology with 151 points in the chordwise
direction, 45 grid points in the spanwise direction, and 50 points in
the normal direction is used.

Nonrotating Blades

Flow computations are made using the OVERFLOW2 code along
with the Baldwin–Lomax turbulence model [24]. Accurate
prediction of unsteady pressures is a necessary part of aeroelastic
computations, and the current unsteady results are validated with
well-documented experimental results reported in [31] for a
nonrotating blade. In the experiment, a bladewith an aspect ratio of 6
and a 6% circular arc section is subjected to forced sinusoidal elastic
bending motion, and corresponding unsteady pressure data is
measured. Experimental data include steady-state measurements
when the blade is not oscillating.

First, steady-state computations for a nonoscillating case are made
to check the adequacy of the grid used. Good comparison between
computed andmeasured steady-state data in Fig. 5 demonstrates that
the C-H grid size selected is adequate for resolving the transonic
flows.

Figure 6 shows the comparison of unsteady pressure between
OVERFLOW2 and experiments [31] for M/ � 0:90 at a reduced
frequency k� 0:26 based on the chord when the blade is undergoing
forced sinusoidal elastic bending motion. Both the magnitude and
phase angles of unsteady pressures peak near the shock wave, which
are accurately predicted by OVERFLOW2 with 1200 time steps per
cycle. It is noted that the linear aerodynamics theory used in the
comprehensive code cannot predict unsteady pressure jumps and
phase angles associatedwithmoving shockwaves. Flappingmotions
play an important role in the aeroelasticity of rotorcraft.

A nonrotating blade for which a measured pitch-flap flutter
boundary is given in [32] is selected to validate the C++ executive
RUNEXE. Figure 7 shows the first bending and torsional mode
shapes and frequencies computed from BEMBLD. Figure 8 shows
the stable, unstable, andneutrally stable responsesof the elastic blade.

These responseswere computed using a nondimensional time step
of 0.01, based on accuracy limits of the flow solver, which is 150
times smaller than the smallest time step required to resolve the first
bending mode. This justifies the use of explicit time integration

Fig. 4 Effect of rotor speed on the flapping mode frequencies.

Table 1 Structural properties of NASA Langley

Research Center blade

Properties Values

Length L 54.25 in.
Chord c 4.24 in.
Mass per unit length m 0:039 lb=in:
Bending modulus of elasticity E 1:0 � 107 lb=in:2

Torisional modulus of elasticity J 3:7 � 107 lb=in:2

Poisson’s ratio � 0.30
Sectional area A 0:224 in:2

Torsional area moment of inertia J 0:00485 in:4

Flapwise area moment of inertia Ix 0:00151 in:4

Chordwise area moment inertia Iy 0:02447 in:4 Fig. 5 Comparison of steady pressures at M/ � 0:90, �� 0:0 deg,
and Re� 4:5 � 106.
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selected in this work. Dynamic pressure at the neutrally stable
condition for Mach 0.715 agrees well with the experiment [32].

Rigid Rotating Blade

Results in Figs. 5–8 establish that aeroelastic computations are
accuratewhen running coupled computations for nonrotating blades.
Next, results are demonstrated for a rotating blade, which has an
aspect ratio of 6 and a NACA0012 airfoil section [33]. Figure 9
shows the upper surface pressures at the 60% span station when the
blade is rotating at 1500 rpm with a zero collective angle of attack in
hover. Computed surface pressures converged to a steady state after
three rotations and compare well with the experiment.

Figure 10 shows comparison of Euler and Navier–Stokes-
equations-based sectional lift coefficients with measured data for the
same blade at 1250 rpm with a collective angle of attack of 8 deg.
Results from the Navier–Stokes equations compare better than those
from the Euler equations beyond 70% span. Results from the lifting-
line theory [33] are closer to the Euler solutions beyond 60%span but
deviate away as the span station gets closer to the root. Both
computed results arewithin the uncertainty bound stated in the report
on experiment [33] for span stations beyond the 60% station.

Flexible Rotating Blade

Aeroelasticity of rotating blades is not aswell understood as that of
fixed wings. Quite often, it does not appear explicitly, since it is
embedded in stability computations and implicitly controlled by
trim. With fixed wings, aeroelastic phenomena occur due to the
exchange of energy between fluids and structures [34], and phase
angles between structural motions and aerodynamic responses play a
key role in aeroelasticity [35]. Most studies in aeroelasticity using
compressive codes are combined with trim conditions selected based
onwind-tunnel data criteria [36]. Independent study of aeroelasticity
is required for more complex modern rotor blade configurations.

Nonlinear effects of the flow also play a significant role in rotating
wing aeroelasticity, particularly when tip Mach numbers reach the
transonic range. As shown in experiments [31], the phase angle takes
a jump near the shock wave, which can further impact aeroelastic
behavior.

Fig. 6 Unsteady pressures for flapping motion at M1 � 0:90 and
k� 0:26.

Fig. 7 First two modes of the blade; mode 1 is bending and mode 2 is

torsion.

Fig. 8 Dynamic aeroelastic responses at M � 0:715 corresponding to

measured flutter dynamic pressure q� 1:31 psi, from [32].

Fig. 9 Comparison of upper surface pressure coefficients for rotating

blade.

Fig. 10 Comparison of sectional lift coefficient at 1250 rpm and 8 deg

collective angle of attack.
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Limited aeroelastic experiments are conducted for rotor blades
due to added complexities arising from rotations and hub rigid-body
motions compared to those of fixed wings. In this paper, a
computational model analyzed using a validated linear aerodynamic
method [37] is considered for validation. The structural properties of
the blade are given in Table 2. The aeroelastic results that do not
include the effects of inertial forces are validated for the static model.

The blade is modeled using 10BEMBLD elements that resulted in
50 nodal degrees of freedom. Figure 11 shows the response of tip
displacement with respect to time step at a rotor speed of 15 rad=s.
Results are numerically stable for computations made using 2000
steps. The bladewas ramped up to a collective pitch angle of 10 deg in
2000 steps. It is noted that for a lower number of steps per revolution,
the results numerically diverged after the rampmotion ended. A total
of 6000 steps (i.e., three revolutions) were used, at which time the
results converged to a static equilibrium state.

Static aeroelastic responses were computed up to a rotor speed of
40 rad=s. Figure 12 shows the favorable comparison between linear
aerodynamic computations and present computations. Beyond
30 rad=s, at which the tip Mach number reaches 0.60, the results
begin to differ. For Mach numbers above 0.6, linear aerodynamic
method possibly becomes less effective. Though one might assume
that CFD-based methods are valid at higher Mach numbers, further
experimental data are required to confirm results.

Dynamic Aeroelastic Computations

Dynamic aeroelastic computations are made for a blade that was
tested in awind tunnel for hover and cruise conditions [38]. The blade
was tested for various root conditions with and without gust loads.
The blade has an aspect ratio of 15withNACA0012 airfoil section. In
this paper, a case without gust loads in which the response was
predominantly in flapping motion with high torsional rigidity is
selected. For this case, the blade responded like a rigid blade by only
undergoing flapping motion. In the experiment, the collective and
cyclic flap deflections as root rotations were measured.

Computations were made using the Euler equations at a rotating
speed of 100 rad=s, leading to a tip Mach number of 0.25. Figure 13
shows the good comparison of flap deflection response with the
experiment in hover. Time-accurate coupled computations required
0.025 deg of azimuth angle per step in order to obtain stable and
accurate results. Computed results converge to steady statewithin the
first quadrant of the motion. The experimental results are based on
the collective flap deflection. Because of steady-state hover motion,
cyclic flap deflections are not present.

Figure 14 shows the comparison of flap deflection for a cruise
condition of 0.40 advance ratio when the blade is rotating at
100 radians per second with a shaft angle of 10 deg. Computations
required 14400 steps per rotation and reached harmonic conditions in
the second cycle. The computed results compare well both in
magnitude and phase with the experimental result which is based on
measured collective and the first harmonic cyclic flap deflections.

Conclusions

This work shows that it is practical to time-accurately couple the
Euler/Navier–Stokes flow solver with a beam-finite-element-based

Table 2 Structural properties of Massachusetts

Institute of Technology blade

Properties Values

Length L 5.5 m
Chord c 0.65 m
Mass per unit length m 18 kg=m
Axial rigidity EA 1:0 � 108 N
Torsional rigidity GJ 1:0 � 108 N 	m2

Bending rigidity about x axis EIx 1:1 � 105 N 	m2

Bending rigidity about y axis EIy 1:0 � 107 N 	m2

Fig. 11 Aeroelastic response at rotor speed of 15 rad=s.

Fig. 12 Comparison of static aeroelastic responses between linear

theory and RUNEXE.

Fig. 13 Comparison of dynamic aeroelastic displacements between

RUNEXE and experiment in hover.

Fig. 14 Comparison of dynamic responses at a rotating speed of
100 rad=s and advance ratio of 0.40.

862 GURUSWAMY



structure solver as opposed to the current limited non-time-accurate
loosely coupled approaches. The C++ programming language is
found to be effective in seamlessly integrating flow and structure
solvers by providing a modular and portable computational
environment extendable for use with 3-D FEM. The solution
procedure presented allows for large movements of flexible
components needed to model helicopter blade aeroelasticity. The
good comparison of unsteady results with experiments for flexible
nonrotating and rigid rotating blades prove the time accuracy of the
procedure presented. It resulted in the time-accurate prediction of
aeroelastic responses of a nonrotating blade. The procedure demon-
strates accurate computation of static aeroelastic responses of a
rotating blade up to a rotor speed of 30 rad=s. Dynamic aeroelastic
results compare well both in magnitude and phase angles of
displacement responses with those results based on wind-tunnel
measured data, showing that the present time-accurate coupling
procedure is valid.
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